The karyotype of *Myotis daubentonii*: A first step towards chromosome evolution of the species

Verónica F. Mestre, Paulo Barros, Sandra Faria, Raquel Chaves, David Ray, João Alexandre Cabral, Filomena Adega
1. Introduction

- Medium size bat;
- Insect predator;
- Daubenton’s bats catch their prey from still water surfaces using slow hawking and gaffing techniques.
- The fur is characterized as brown-gray to a slightly red dark bronze on the dorsum and silver-gray to white on the belly;
- Some diagnostic characters of Daubenton’s bats include a large foot;
- Unique trawling bat specie strictly associated with riparian habitats in Portugal;
- Conservation status: Least Concern.

Myotis daubentonii
1. Introduction

Myotis daubentonii

Cytogenetics is important to evolutionary, taxonomic and phylogenetic studies.

Main objective:

Obtainment of the organized karyotype of *M. daubentonii daubentonii* and chromosome evolution analysis.
The karyotype of *Myotis daubentonii*: A first step towards chromosome evolution of the species

2. Methods

Mist netting

biometric collection

biologic sampling collection (3mm punch)
2. Methods

The karyotype of *Myotis daubentonii*: A first step towards chromosome evolution of the species

- **Methods**
 - C-banding
 - G-banding

- **Chromosome preparations**
 - Primary cell culture
 - Cell line
 - Cryopreservation (Bat Cell Bank)
 - Further studies
 - Further studies
The karyotype of *Myotis daubentonii*: A first step towards chromosome evolution of the species

3. Results and discussion

G-banding

C-banding
3. Results and discussion

Myotis daubentonii daubentonii

2n=44

Most of Myotis species exhibit 44 chromosomes, however their organization isn’t yet fully known. The repetitive fraction (constitutive heterochromatin and transposable elements) of these genomes is poorly understood.
4. Conclusions and future perspectives

Why is *M. daubentonii* *daubentonii* karyotype important?

- **Knowledge** about the species itself;
- First step to complex **evolutionary studies**.

What's next?

- Obtainment and comparison with the karyotype of *M. daubentonii nathalinae*;
- Obtainment of the **karyotype** of all the bat species existing in **Portugal**;
- Analysis of the **mobile genome** (set of transposable elements in each genome) of these species and its involvement in their karyotype organization and evolution that may impact on the diversity and peculiar biology of bat species.
Thank you!