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INTRODUCTION
Many animals need to move around the landscape 

periodically to satisfy needs, such as fleeing predators 
and reaching grounds suited for foraging, drinking, 
resting, reproducing or hibernating (Alcock 2009). While 
small-distance movements are often studied by visual 
observations or external sensors such as video recordings 
or acoustic tracking, long-distance movements are usually 
followed by animal-borne sensors such as radio-telemetry, 
GPS, or ARGOS (Demšar et al. 2015, Koblitz 2018, Williams 
et al. 2020, Morrant et al. 2022). Each one of these methods 
has pros and cons, and should be chosen according to the 
specific goals of the study. For example, studying the success 
rate of lions when attacking their prey is best done using 
visual observations rather than radio-telemetry. 

The differentiation of movement functions (e.g. foraging 
vs. commuting) is a challenge that is tackled in each of 
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ABSTRACT
The feeding activity of bats can be quantified by counting the number of feeding 
buzzes, which are a specific series of short calls emitted in an attempt to capture 
prey. However, identifying them in large amounts of recordings is very time-
consuming. With the availability of automated identification tools, it is now possible 
to automatically identify feeding buzzes and associate this with the identity of the 
bat species. Yet, this process is still consuming in terms of time and computational 
resources. In this study, our objective was to find a simple metric to predict the 
occurrence of feeding buzzes.
For our demonstration, we used acoustic data from the citizen science program Vigie-
Chiro, France. We first automatically classified species with a species classifier, and 
then feeding buzzes with a sonotype classifier. We then associated the buzzes with 
the species identity and evaluated the performance of this pair of classifications. 
We calculated two candidate metrics, namely the mean bat pass duration and the 
standard deviation of the inter-pass duration over the night. We then compared 
their performance to predict the number of feeding buzzes per hour of the common 
pipistrelle (Pipistrellus pipistrellus).
The automatic association process between species and feeding buzzes had a 
sensitivity of 96 % and a specificity of 84%. Both assessed metrics significantly 
predicted the number of feeding buzzes per hour. However, the mean duration of 
bat passes per night was a better predictor than the standard deviation of the inter-
pass duration. 
We conclude that the mean duration of bat passes per night can be used to study 
the foraging activity of the common pipistrelle. This metric is probably usable for 
other species using similar foraging strategies. It could also be very convenient to 
monitor the foraging activity of species that do not produce feeding buzzes, although 
additional investigations must be done to confirm this hypothesis. 

these methods differently. For instance, in GPS tracking, 
a stronger sinuosity of the track or clusters of locations 
are associated with a higher probability of foraging than 
commuting, because the animal will spend more time 
at the same location (Saldanha et al. 2023). Classifying 
animal movements has applications in countless disciplines, 
including ethology, evolutionary ecology, conservation 
ecology, virology, and statistics and mathematics applied 
to ecology (Smouse et al. 2010, Doherty & Driscoll 2018, 
Riotte-Lambert & Matthiopoulos 2020, Abrahms et al. 2021, 
Schloesing et al. 2023). However, when the classification 
of animal movements at a large spatio-temporal scale is 
desired, e.g. classifying the use of habitats across a country, 
air-borne sensors are not always an option because some 
animals are too small, too rare or too elusive to be equipped. 
Even at a small scale, e.g. to study how a few hectares are 
used by a species, equipping a lot of individuals is very time-
consuming and costly.
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Acoustic monitoring is a relatively recent method that 
notably allows one to detect and quantify the activity of 
vocal species, while providing the identity of the species 
in many cases (Browning et al. 2017). Acoustic activity is 
usually quantified by counting the number of bat passes, 
which are either defined as individual calls, more calls 
within a time interval, or any series of calls before a silence 
(Britzke et al. 2013). With a single microphone, additional 
information on movement, such as foraging activity, can also 
be measured, e.g. the feeding buzzes of bats; these feeding 
buzzes are series of more than five very short echolocation 
calls emitted with very short time intervals (<10 ms) and a 
large bandwidth, best suited to locate prey at a very short 
distance from the bat (Griffin et al. 1960).

With the development of cheaper, more available 
acoustic monitoring hardware, there is increasing demand 
for automated tools to process the large volumes of 
sound recordings collected, such as automated acoustic 
classifiers (Bas et al. 2017, Fraser et al. 2020). Once species 
classification is done, another classifier is necessary to 
distinguish feeding buzzes from the other echolocation calls. 
Although feeding buzzes can be classified with a success 
rate above 93 % (Roemer et al. 2021), classification requires 
significant computational resources. If possible, it would 
therefore be more efficient to directly rely on information 
that is already contained in sound detection (e.g. frequency, 
duration, inter-call intervals) to describe foraging activity 
with acoustic recordings. In addition, some bats such as 
gleaners (e.g. Plecotus auritus or Myotis myotis) will very 
rarely emit feeding buzzes because they often rely on the 
acoustic cues emitted by their prey to forage (Dietz et al 
2009). Thus, using feeding buzzes to classify bat behaviour 
will fail for these species. 

The results of Kerbiriou et al. (2018) suggest that the 
duration of a bat pass (i.e. the duration between the first 
and the last call without silence) is a proxy of its foraging 
behaviour, as foraging flights should be associated with a 
stronger sinuosity and thus trigger longer recordings than 
commuting flights. Another good candidate is the standard 
deviation of the time between bat passes, because we 
expect foraging bats to fly back and forth in front of the 
microphone (i.e. short standard deviation), while we expect 
commuting bats to demonstrate no particular pattern (i.e. 
large standard deviation).

Thus, our goal was to test whether the mean duration 
of bat passes and the standard deviation of the time 
between bat passes would be good predictors of the 
number of feeding buzzes emitted per hour, as determined 
using automated tools. For these purposes, we used the 
common pipistrelle (Pipistrellus pipistrellus) as a model 
species, which is considered one of the most abundant and 
widespread species in Europe (Mathews et al. 2023). It is a 
good candidate for acoustic monitoring because it is easily 
detectable and frequently emits feeding buzzes.

MATERIAL AND METHODS
Dataset

We used the dataset of the citizen science program Vigie-
Chiro (French National Museum of Natural History), in which 
citizens sample bat acoustic activity with full-spectrum 
ultrasonic recorders for the whole night in fixed locations in 
France mainland, where 36 bat species are extant (Arthur 
& Lemaire 2021). To make sure that the recordings are 
comparable across the different recorders, different settings 
are applied according to the material used and they are 
available in Supplementary Material (SM) 1. Recordings were 
performed mostly during meteorological conditions known 
to be selected by bats, i.e. no rain, temperature not too low 
according to the normal conditions of the geographical area, 
and low wind speed. 

This database contains 370 Terabytes of WAV data. We 
thus performed a random sampling of this database so to 
obtain 1000 study sites (approximately equivalent to 12 
Terabytes), that we considered to be a satisfying amount 
for our demonstration. Before that, incomplete nights were 
removed. We then sampled the 1000 study sites without 
replacement, which contained one or several nights per site. 
The study sites were sampled between 2010 and 2021, each 
site being surveyed for a minimum of one night (mean = 3.5 
nights, max = 32 nights).

Sound detection, species and feeding buzz classification

We used the Tadarida software (Bas et al. 2017) to 
detect sound events and measure their features such 
as frequencies, amplitude and duration. Following the 
software recommendations, the recordings were cut in 
sequences of a maximum of five seconds in length. We used 
the species classifier built with Tadarida and used in the 
Vigie-Chiro program (version 03-03-2018) to classify species. 
We also used the sonotypes classifier built with Tadarida 
and published by Roemer et al. (2021) to classify feeding 
buzzes. After classification, each 5-second long sequence 
is thus given a species classification (e.g. probability of P. 
pipistrellus: 0.5) and also a likelihood that this sequence 
contains a feeding buzz (e.g. 0.2).

Since a sequence can contain more than one species, we 
developed a script to match the species identification with 
the feeding buzzes. This script verifies that the start and 
end times of the calls identified as buzzes are between the 
start and end times of calls identified as the species. If there 
are still several species in this match, the script keeps only 
the species with the lowest frequency difference with the 
buzz. Once this match was done, we only kept species with a 
confidence index for the species identification greater than 
0.5 (see Barré et al. 2019). This step is called “species/buzz 
classification and association”.

If the species classifier did not identify any bat in the 
5-second sequence, then we used this information to modify 
the result of the buzz classifier. More precisely, if a buzz was 
identified by the buzz classifier, while no bat was identified 
by the species classifier, then we changed the result of the 
buzz classifier to “absence of buzz” because bush-crickets, 
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birds and noise do not produce bat feeding buzzes. This step 
is called “bat buzzes only”. 

Evaluation of the classification performance

To evaluate the classification of feeding buzzes and 
species, one 5-second sequence was chosen per night for 50 
random nights. Only sequences for which a buzz was initially 
identified by the buzz classifier (before we changed the 
result during the “bat buzzes only step, see previous section) 
were randomly selected. For each sequence, we performed 
a validation for the buzz classifier (buzz or absence of buzz), 
and we performed a validation for the species classifier (e.g. 
Pipistrellus pipistrellus, Eptesicus serotinus, noise, Tessellana 
tessellata). The WAV file was checked on the spectrogram 
issued with Syrinx (John Burt, USA). Manual species 
identification and verification were done using shape, 
frequency, time and amplitude criteria (Barataud 2015, Russ 
2021). 

We evaluated the performance of the classifiers using a 
sensitivity and specificity analysis. The specificity (Sp) and 
the sensitivity (Se) were calculated as such:

Specificity:     

Sensitivity:     

Where TN = True Negative, TP = True Positive, FN = False 
Negative and FP = False Positive.

A confusion matrix was then calculated to obtain the 
rate of true/false positives and negatives. 

We first evaluated the performance of the species 
classifier. Since our target are bat feeding buzzes, we 
focused our evaluation on the capacity of the species 
classifier to correctly identify bat species, and it was not 
important whether the classifier could correctly identify 
other sound categories (e.g. noise, bush-crickets, birds). 
In this framework, a true positive is a sequence in which a 
bat species was correctly identified by the classifier. A false 
positive is a sequence in which a sound was falsely identified 
by the classifier as a bat species. A true negative is a sequence 
in which there was no bat and the classifier did not identify a 
bat. A false negative is a sequence in which there was a bat 
that was not identified as a bat by the classifier. See Table 1 
for examples.

For sequences in which a buzz was identified by the buzz 
classifier, we checked whether it was a true positive (a real 
buzz) or a false positive (not a buzz). We did not check true 
negatives (a sequence that was correctly identified as not 
containing a buzz) and false negatives (a sequence that was 
incorrectly determined as not containing a buzz) because 
our final workflow processes bat buzzes only.

We finally evaluated the performance of the full process, 
i.e. the species/buzz classification and association, using 
the sensitivity and specificity analysis. Here again, since our 

target are bat feeding buzzes, we focused our evaluation 
on the capacity of the species classifier to correctly identify 
bat species, and it was not important whether the classifier 
could correctly identify other sound categories (e.g. noise, 
bush-crickets, birds). In this framework, a true positive is 
a buzz correctly identified and associated to a bat species 
correctly identified. A false positive can be either (1) a 
sequence in which a feeding buzz was present and correctly 
identified, but the bat species producing it was falsely 
identified, or (2) a sequence in which a species was correctly 
identified, but the buzz classifier identified a buzz when in 
fact there was no buzz. A true negative is a sequence that 
was, after the “bat buzzes only” step, correctly determined 
as not containing any buzz or bat echolocation call. A false 
negative is a sequence that was, after the “bat buzzes only” 
step, falsely determined as not containing any buzz while 
the bat species was either correct or incorrect. See Table 1 
for examples.

Calculation of metrics: Number of feeding buzzes/hour, 
mean bat pass duration and standard deviation of the 
inter-pass duration

The metrics were only calculated for P. pipistrellus. 
For each night, we calculated the number of bat passes 
and removed the night from the dataset if there were less 
than 20 bat passes to make sure that the calculation of the 
metrics was sufficiently accurate. Indeed, to compute the 
relative number of feeding buzzes per hour (see below), we 
divide the number of buzzes by the cumulated duration of 
bat passes during the night; in the case of a night with, e.g., 
only one buzz and one minute of cumulated activity, the 
result would thus be an abnormal high amount of relative 
feeding buzzes per hour. We thus avoided these abnormal 
cases.

Mean bat pass duration. We defined bat pass duration 
as the time between the start time of the first call and the 
start time of the last call of a species detected and identified 
by the species classifier without silence, where silence is 
defined as no bat call for at least two seconds. This metric 
is calculated by considering the possibility that bat passes 
can occur across consecutive sequences of 5 seconds. The 
mean bat pass duration is calculated over the entire night. 
The minimum length of a sequence was 0.1 s.

Standard deviation of the inter-pass duration. This 
metric is the standard deviation of the time separating the 
bat passes of the same species during the night (see Fig. 1).

Relative number of feeding buzzes per hour. A medium 
rate of feeding buzzes per hour could be the result of a high 
activity associated with few feeding buzzes, but it could 
also be the result of a moderate activity associated with a 
moderate amount of feeding buzzes. Therefore, to account 
for the amount of activity, we included the duration of the 
cumulated passes during the night (representing the activity 
level) to calculate the relative number of feeding buzzes per 
hour:

Relative n° feeding buzzes per hour :	  
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It is thus a measure of the relative occurrence of a 
feeding buzz that is independent of the amount of activity 
on the site. We therefore expect the value of this measure 
to be high in the case of foraging only, and to be low in the 
case of commuting only.

Correlation tests

Pearson correlation tests were done between the 
different metrics. The Relative number of feeding buzzes 
per hour and the mean bat pass duration were not normally 
distributed, and we thus normalised their distribution with 
the logarithmic function before running the test.

Modelling

Modelling was performed in R (R Core Team 2021) 
with the glmmTMB package (Brooks et al. 2018). The 
relative number of buzzes per hour (response variable) was 
modelled as a function of the mean bat pass duration and the 

standard deviation of the inter-pass duration (predictors). 
We added the site as a random effect to account for the 
spatial structure of the dataset. We built a null model, a full 
model with both predictors, and models with either one of 
the predictors. The full model is described by the following 
equation:

buzzhour~ Mean bat pass duration +  
Standard deviation of the inter-pass duration + (1|Site)

The distribution of the response variable (i.e. the 
number of buzzes per hour) was zero-inflated. We thus used 
three different candidate families to model the response 
variable: (1) Poisson, (2) negative binomial (nbinom2), and 
(3) negative binomial with zero inflation. The last model 
accounts for zero inflation in the distribution of the values 
in the response variable. We kept only the model with the 
lowest Akaike Information Criterion (AIC); if there was a 
tie between models, we would keep the one that had no 

Table 1 – Examples for the determination of true positives, false positives, true negatives and false negatives for the different steps of 
classification.

Category Result of classifier Result of manual checking
Species classifier

True positive P. pipistrellus P. pipistrellus

False positive P. pipistrellus
P. pygmaeus

Noise
True negative Bush-cricket Bush-cricket

False negative
noise

P. pipistrellus
Bush-cricket

Buzz classifier
True positive Buzz Buzz
False positive Buzz No buzz

Species/buzz classification and association

True positive P. pipistrellus + buzz P. pipistrellus + buzz

False positive
P. pipistrellus + buzz P. pygmaeus + buzz
P. pipistrellus + buzz P. pipistrellus (no buzz)

True negative
P. pipistrellus (no buzz) P. pipistrellus (no buzz)

Bush-cricket Bush-cricket

False negative
P. pipistrellus (no buzz)

P. pipistrellus + buzzP. pygmaeus (no buzz)
Bush-cricket

Fig. 1 – Illustration of the calculation of inter-pass duration. The arrow represents the time elapsing during the night.
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variable without a significant effect (e.g. for two models 
with an AIC difference inferior to 2, if the Mean bat pass 
duration is significant in the first model, but not in the 
second model, we would keep the first model). We then 
analysed the residuals using the simulateResiduals function 
of the DHARMa package (Hartig 2017). We evaluated the 
r2 of the model using the r2 function of the performance 
package (Lüdecke et al. 2021). Predictions were made with 
the ggpredict function of the ggeffects package (Lüdecke et 
al. 2020).

RESULTS
After the selection of sampling nights with a minimum of 

20 bat passes, 831 study sites were retained from the initial 
set of 1000 study sites. Twenty-five different species were 
identified with a probability greater than 0.5 by the species 
classifier (see Table 1 in SM 2). P. pipistrellus was identified 
by the species classifier in 1044 of the 1168 site*nights, 
which represents 264,893 bat passes in total for a total of 
10659.53 hours of recording.

Validation of the automatic association of feeding buzzes 
with species identifications

Concerning the species classifier, 41 out of 50 files 
were correctly identified as a bat, a bush-cricket, a bird or 
noise (SM Table 2). Concerning bats, 28 out of 29 files were 
correctly identified at the species level (Table 2 and SM Table 
2). The only false negative was a P. pipistrellus identified 
as a bush-cricket (Leptophyes punctatissima). The species 
classification had a sensitivity of 96.6 % and a specificity of 
100 %.

When the feeding buzz classifier identified a buzz, half 
of the files did not contain one (Table 3). Among these false 
positives, 52 % were bush-crickets, 32 % were noise, and 14 % 
(i.e. four files) were high-pitched (> 90 kHz) echolocation calls 
of Rhinolophus ferrumequinum (harmonics), Rhinolophus 
hipposideros, P. pipistrellus and Myotis emarginatus. 

Concerning the species/buzz classification and 
association (Table 4), the false positives remain the same 
ones as those identified during the previous step (Table 3). 
The only false negative was due to the error of the species 
classier mentioned before (Table 2): the feeding buzz emitted 
by a P. pipistrellus was classified by the species classifier as 
a bush-cricket (Leptophyes punctatissima). The species/buzz 
classification and association had a sensitivity of 96 % and a 
specificity of 99.1 %.

Distribution of the predictors

The mean bat pass duration has a right-skewed 
distribution with a median value of 5 seconds and the 
standard deviation of the inter-pass duration has a normal 
distribution with a median value of 13.6 seconds (Fig. 2).

Correlation between the different metrics

All metrics were significantly correlated: the number of 
buzzes per hour increased with the mean bat pass duration 
and decreased with the standard deviation of the inter-pass 
duration (Table 5). 

Modelling the relative number of feeding buzzes per hour

All models were significantly better than the null models, 
including models for each family types (Table 6). The lowest 
AIC values correspond to models with a negative binomial 
family with zero-inflation. The mean bat pass duration 
always had a significant effect, but the standard deviation 
of the inter-pass duration only had a significant effect in the 
negative binomial family if it was the only predictor. The 
retained model is thus the negative binomial family with 
zero-inflation with mean bat pass duration as a predictor. 
The analysis of the residuals detected no major problem 
(SM Fig. A1). The conditional r2 was 0.982 and the marginal 
r2 was 0.1.

As expected, the longer the bat pass duration, the more 
feeding buzzes per hour were recorded (Fig. 3).

Table 2 – Confusion matrix for the species classification.  TN = True Negative, TP = True Positive, FN = False Negative and FP = False Positive. 
The meaning of species abbreviations is shown in SM Table 3.

Validation

barbar eptser myodau myoema pipkuh pippip pippyg rhifer rhihip bush- 
cricket noise

Cl
as

si
fie

r

barbar 1 TP
eptser 2 TP

myodau 2 TP
myoema 1 TP
pipkuh 3 TP
pippip 15 TP
pippyg 2 TP
rhifer 1 TP
rhihip 1 TP
bush-
cricket 1 FN 11 TN 2 TN

bird 1 TN
noise 2 TN 5 TN

Charlotte Roemer, Sarah Chayrigues, Romain E. Lacoste, Yves Bas

https://doi.org/10.14709/BarbJ.17.1.2024.07
https://doi.org/10.14709/BarbJ.17.1.2024.07
https://doi.org/10.14709/BarbJ.17.1.2024.08


Journal of Bat Research & Conservation			              		  Volume 17 (1) 202483

- P
ROOFS

 -

Table 3 – Confusion matrix for the feeding buzz classification.  TP = True Positive and FP = False Positive.

Validation

buzz no buzz

Classifier buzz 25 TP 25 FP

Table 4 – Confusion matrix for the species/buzz classification and association.  TN = True Negative, TP = True Positive, FN = False Negative 
and FP = False Positive. The meaning of species abbreviations is shown in Table A3.

Validation

buzz 
barbar

buzz 
eptser

buzz 
myodau

buzz 
pipkuh

buzz 
pippip

buzz 
pippyg

no 
 buzz 

myoema

no0 
 buzz 

pippip

no 
buzz 
rhifer

no 
buzz 

rhihip

bush-
cricket noise

sp
ec

ie
s/

bu
zz

 c
la

ss
ifi

ca
tio

n 
an

d 
as

so
ci

ati
on

buzz 
barbar 1 TP

buzz 
eptser 2 TP

buzz 
myodau 2 TP

buzz 
myoema 1 FP

buzz 
pipkuh 3 TP

buzz 
pippip 14 TP 1 FP

buzz 
pippyg 2 TP

buzz 
rhifer 1 FP

buzz 
rhihip 1 FP

bush-
cricket 1 FN 11 TN 2 TN

bird 1 TN

noise 2 TN 5 TN

Fig. 2 – Distribution of the mean bat pass duration and the standard deviation of the inter-pass duration over the night for the common 
pipistrelle (Pipistrellus pipistrellus).
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DISCUSSION
Our study provides the simplest proxy to describe 

bat foraging behaviour at a study site: the mean bat pass 
duration. It is a continuous variable, meaning that it cannot 
be used to differentiate a feeding site from a commuting site 
based on a threshold. However, it can be very conveniently 
used as a continuous predictor of the probability that a site 
is used for foraging.

Automated matching between feeding buzzes and species 
identification

Our study is the first to provide a workflow to 
automatically match the identification of feeding buzzes with 
species identifications using automated classifiers. Although 

the number of files checked was relatively low (i.e. 50), the 
sensitivity (96%) and specificity (84%) were  satisfactory to 
conduct our analyses. The only false negative was due to 
misidentifying a feeding buzz as a bush-cricket. Both sounds 
are indeed particularly similar and this confusion might be 
quite common. According to Roemer et al. (2021), feeding 
buzzes are less often identified as bush-crickets (1 out of 183 
cases) than bush-crickets are identified as feeding buzzes 
(26 out of 183 cases). As bush-crickets have a low mobility, it 
is usually easy to detect study sites with potential problems 
because the validation of at least one file with a bush-cricket 
increases the probability to find it throughout the rest of the 
night. In many cases, it is indeed advised to check manually 
a subset of files when using automatic classifiers to correct 
their identification errors (López-Baucells et al. 2019).

Candidate metrics to predict foraging activity

Both mean bat pass duration and the standard 
deviation of inter-pass duration were correlated with the 
relative number of feeding buzzes per hour. However, the 
comparison of the different generalised linear mixed models 
demonstrated that the mean bat pass duration is the best 
predictor. The longer the mean bat pass duration, the more 
feeding buzzes per hour are recorded. This result validates 
the hypothesis of Kerbiriou et al. (2018) according to which 
a foraging bat will display a flight trajectory with a stronger 
sinuosity than a commuting bat, and thus trigger longer 
acoustic recordings.

Limitations

Our study used P. pipistrellus as a model species. 
Completing this analysis for other species would be needed 
to generalise the results. Furthermore, we expect the 
amount of feeding buzzes emitted by one individual during 

Table 5 – Pearson correlation coefficients between the different metrics for the common pipistrelle (Pipistrellus pipistrellus).

Variable 1 Variable 2 ρ p-value
Number of buzzes per hour Mean bat pass duration 0.46 < 0.001

Number of buzzes per hour Standard deviation of the inter-pass 
duration - 0.16 < 0.001

Standard deviation of the inter-pass 
duration Mean bat pass duration - 0.30 < 0.001

Table 6 – AIC values of the different models built to model the number of buzzes per hour for the common pipistrelle (P. pipistrellus). *: 
the effect of the standard deviation of the inter-pass duration was not significant. The values in bold represent the lowest values.

Model family

Variables Poisson Negative 
binomial

Negative binomial and 
zero-inflation

(null model) 17749.8 9878.3 9526.6
Mean bat pass duration 17348.4 9801.5 9473.9
Standard deviation of the inter-pass duration 17676.8 9862.4 9521.1
Mean bat pass duration + Standard deviation of 
the inter-pass duration 17331.3 9803.3* 9475.2*

Fig. 3 – Prediction of the relative number of feeding buzzes per 
hour as a function of mean bat pass duration (logarithmic scale). 
95% confidence intervals are shown in grey. The ticks on the x axis 
show the sampled data.
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the night to be correlated with the biomass of insects preyed 
upon. This means that for the same number of prey and the 
same number of bats, we expect to record fewer buzzes on 
a study site containing bigger prey on average than another 
study site, because bats will obtain more calories from 
bigger prey and be satiated sooner.

In addition, buzzes are not only emitted for foraging; 
they can be emitted for drinking and to land (Russ 2021), 
although we expect these non-feeding buzzes to be much 
less frequent. Some social calls (e.g. Vespertilio murinus) 
may resemble feeding buzzes, and Roemer et al. (2021) 
indeed show that social calls resembling buzzes will be 
classified as such by the sonotypes classifier. Moreover, we 
expect the performance of the species/buzz classification 
and association process to drop in the case of multiple 
species because the automatic assignation of the buzz to the 
right species is a very complex task.

Pipistrellus pipistrellus has a relatively small home range 
(Laforge et al. 2021), and it is therefore expected that it 
will spend a relatively small amount of time commuting; 
this could limit our capacity to disentangle the commuting 
activity from the foraging activity. Yet, our analysis captured 
enough signal to find a relationship between mean bat pass 
duration and the relative number of feeding buzzes per 
hour. It would be interesting to reproduce this analysis with 
species with larger home ranges such as Myotis daubentonii, 
Barbastella barbastellus or Nyctalus species.

Additional investigations should be done to test whether 
the mean bat pass duration can be used directly to compare 
foraging activity between habitat types. Indeed, the clutter 
could be a confounding variable to explain the mean pass 
bat duration, i.e. cluttered habitats could lead to shorter bat 
pass durations than open habitats. In addition, it is likely that 
mean bat pass duration is a poor metric to qualify foraging 
activity close to roosting and swarming sites, since bats will 
spend an unusual amount of time at these sites to perform 
social activity.

Finally, in some situations, damaged microphones 
continue to record with a lower amplitude, which will 
consequently reduce bat pass durations. Defective 
microphones may be identified thanks to abnormal 
distributions of bat pass duration.

CONCLUSION
The mean bat pass duration over the night can be used 

to predict foraging grounds of P. pipistrellus. This proxy likely 
works well for other species using similar foraging strategies. 
Using mean bat pass duration as a proxy for foraging 
activity would be particularly useful for monitoring species 
that produce few or no feeding buzzes. However, more 
focused research is needed to test the effectiveness of our 
method for these species. This proxy also saves important 
computational resources as it does not require the use of a 
classifier dedicated to feeding buzzes.

AVAILABILITY OF DATA
The dataset used to build models is available in 

Supplementary_material_3.csv.

All R scripts and example files are available at https://
github.com/Charlotte-Roemer/bat-pass-duration
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