Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

There is a lack of studies designed to detect the most important areas for bat conservation. In this context, areas of high bat activity have been rarely considered in the delimitation of protected areas for bats, which are generally focused on the protection of roosting sites. This has been due to the difficulties of sampling the distribution of these nocturnal animals when moving at night. This methodological constraint has been overcome by the development of bioacoustic sampling, which allows mapping the occurrence of active bats over large areas. In this study, we use bat detectors to sample the distribution of bat activity in central Spain. This region is under the environmental effects of a mountain range (Guadarrama Mountains) and the urban encroachment of the city of Madrid. The occurrences provided by the detectors were used to produce species distribution models of which the resulting layers were arranged to detect the most suitable areas for bat richness and rarity indices. We performed a gap analysis to explore whether the areas most commonly used by active bats are covered by the current network of protected areas. The results showed that the best areas of high bat activity are located at the piedmont of the mountains and that most of these areas overlap with the existing network of protected areas. The best areas for bats excluded the most urbanized areas and within a similar urban gradient, protected areas tended to be located within the best sites for conservation. These results suggest that bats currently benefit from a network of protected areas initially aimed to protect birds and habitats (Natura 2000). In addition, monitoring areas of high bat activity could complement roosting site protection in the conservation of bat assemblages.

Click this link to see the published article here: https://zslpublications.onlinelibrary.wiley.com/doi/10.1111/acv.12719

Dibujo de Daniel Truchado y David A. Oropesa.

admin